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IV. SUMMARY

The capacitance of a rectangular metal line over a conducting

ground plane, for W/h ~ 1, is

in Ra = – 1 – rtW/2h – [(p + 1)/plf2] tanh-l p-1/2

- in [(p - 1)/4p]

Rb = ~ + [(p + 1)/2p112] in A

V = P1’2{7rW/2h + [(p + 1)/2p1’2] [1 + in 4/(P – 1)]

— 2 tanh- 1 p- 1/2 }

A = larger value, q or ~

p=2B2–1+ J(2B2–1)2–1

B=l+ t/h. (24)

The accuracy of (24) is about 1 percent when W/h ~ 1.

The capacitance of a rectangular metal line with two con-

ducting ground planes, for W/h z 0.5, d/h > 0.5, is

Cl& = 2/rL In RB/R~

h-sRA = – rrW/2h – 2ct tanh-l J(p + q)/p(l + q)

+ 2Y tanh-l p-i/2 + in 4p/(p – 1)

in R~ = y-l{rrw/2h + 2a tanh-l J(l + q)/(p + q)

+ y In (p – 1)/~ – 2 tanh-i p-112)

a=(lt+d+t)/h

q = ~[a2 – yz – 1 + J(a2 – y2 - 1)2 – 4y2]. (25)

The errors are less than 1 percent. Both formulas are more

accurate for a wider and/or a thicker metal line, Once the capac-

itance is found, the characteristic impedance of the composite

transmission line is easily obtained. Aside from a constant, the

characteristic impedance is the inverse of the capacitance.
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Equivalent Circ~t of a Narrow Axial Strip in Waveguide
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Abstract—A theoretical determination is made of the two-port equiv-
alent circuit of a narrow strip located axially in a rectangular wavegrside
such that it extends partially or completely across the wameguide narrow
dimension. The analysis is based upon derivation of a variational expres-
sion for a field quantity from which can be determined the reflection co-
efficient and the equivalent-circuit parameters. Experimental input

snsceptnttce values agree closely with the theory. The analysis shows

that the T-equivalent network of a nontouching strip has a series-resonant

shunt circuit. This element has application in filter and impedance-

transforming networks, in planar circuits, and in fin-line strnctnres.

I. INTRODUCTION

This short paper presents a theoretical determination, with

experimental verification, of the equivalent circuit of a narrow

infinitesimally thin perfectly conducting strip which is partially

or completely inserted in a rectangular waveguide in such a

manner that the strip surface is parallel to the narrow waveguide

wall.

Konishi et al. [1 ]–[3 ] have developed a method for the

design of planar circuits, by which the circuit elements are

located on a metal sheet which is inserted axially into a wave-

guide; its advantages include low cost and ease of mass produc-

tion. Meier [4]– [7] has advocated fin line, in which metal fins

printed on a dielectric substrate bridge the broad walls of a

rectangular waveguide, as a propagating structure for millimeter-

wave integrated circuits. The geometry considered. in this short

paper belongs to the general form defined by those papers.,

Although the analysis presented here is restricted to narrow

strips, it is applicable to the design of bandpass filters, diode

mounts, and tuning elements of the form described by Konishi

et az, [2], [3].

The narrow axial nontouching thin strip has not previously

been subjected to theoretical analysis. Konishi et al. [2], [3]

used a Rayleigh–Ritz variational technique to obtain an equiv-

alent circuit for a uniform strip which extends across the entire

waveguide height. Their method requires knowledge of the modes

in the two sections of the waveguide bifurcated by the strip; thus

it is not readily applicable to the nontouching strip.

The approach used here is based upon the variational method

used previously by the present authors for the analysis of a thin
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Equation (1) can be manipulated into the form

,~~1: ~ *I ‘in~~j{*[l-e.p(-~lOw)]} ~_JY(y)dy

a
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jcopo sinz “ml
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Fig. 1. The narrow axial strip in rectangular waveguide.
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transverse nontouching strip in. guide [8]. However, further

development is n~e:kary tci apply that theory to the axial strip

because of the greater difficulty in obtaining a variational form,

and also because the axial strip must be represented by a two-

port network.

II.’ RefleCtiOn-COEFFICIENT DERIVATION

The structure being analyzed here is shown in Fig. 1 for the

case where the strip. does not extend across the entire waveguide

height; the special case of a touching strip is readily treated by

this atmlysis, putting d = b. The strip is assumed to be perfectly

conducting (as is the waveguide) and to be infinitesimally thin.

The strip width w is assumed to be small compared to the

dominant-mode waveguide wavelength, so that the current does

not vary appreciably with z in the range O k z < w; this restric-

tion may be removed through a generalization of the analytical

approach presented here.

Consider a dominant-mode incident electric field, we assume

that the scattered field lies only in the j direction, and the Green’s

function ~(r I r’) takes the same form as in. [8] with the exception

that exp (- rnm[zl) is replackd by exp (– r.rnlz – z’1).

The total field at any point r vanishes on the surface S

()zx~
sin —

,J

exp (- rlo.z) – ]COPO [G,(F \ r’)]X=X,
a s

- JY(y’,z’) dy’ dz’ = O on S. (1)

For a narrow strip, J,(y’,z’) will not vary appreciably with z’

in the range O s z’ s w, the reflection coefficient R for the

( ( )(2 – 3.) ko2 – ~

=jco.io ~ ~ + ~
?I=2 m=o m=l;

)
abko2r’n~

atn=l

( Hn7cx1
. sin2 — ~+

r }
+2 [exp (- rnmw) - 1].

a nm nm

b “b

“J J ()
Jy(y),r,(y’) Cos y

b–d b–d

(). Cos mny’
— dy’ dy

b
(3)

through multiplication by ~Y(y) and integration with respect to

y and z over the strip surface at x = xl. Note that this equation

applies to points located on the strip, i.e., for O < z ~ w.

The left-hand side of this equation may be rewritten, using

(2), as

( )J

b

(A + III?) sin @ J,(y) dy
a b-d

where

A = + [1 – exp (–rlo~)]

2W + ~ [..p(–rlow) – 11

H=
l“lo

1 – exp (–rlow) “

Using this form, together with (2) at the z = O plane where both

equations hold, we can form an expression L = – 2R/(A + HR)

given by

L= (~)sin’(~) ‘1 - ‘xp(-rlOw)]~-dj-,.Jy(y)Jy(y’)dy’dy

( )
(2 – am). /%0’ – ~

(

.$, ~~o + ~gl;

)
ko2rnm {

~+
} (%

r< [exp ( – rnmw) – 1 ] sin2
atn=l

r nm nm

bb

“J Jb–d b–d ‘y(y)Jy(y’)cos(a cOs(Y)dy’dy
(4)

dominant mode at z = O may be found as

R=(-)sin(:)Hi[exp(-r’ow)-1]}
“J

b
J,(y’) dy’. (2)

b–d

In [8] tlie R expression could be directly substituted in the Et

expression; a more involved derivation is necessary here.

Using a method similar to ,Lewin [9], this expression for L is

readily shown to be stationary for small variations in J,(Y) about

its correct value. The definition of L compares with the suscep-

tance form – 2R/(1 + R) found to be stationary for the trans-

verse strip [8]. The additional complexity here arises from the

two-port nature of the axial strip impedance.

Using an approximate form for JY(y), we can now determine

L and hence R = – AL/(HL + 2).

1 Our analysis initially used: J(Y:,z’) = .l(y’) exp (— rl Oz’) rather than III. %FLBCTION-COEFFICIENT EVALUATION
J(y’,z’) = .l(y’). However, for $trlp widths of interest, the suscefitance
values obtained were almost exactly equal to those obtained for the simpler For the nontouching strip, the L expression in (4) can be
current. form. We have consequently preferred this form, due to the relative
slmphc]ty of the resulting algebra. evaluated using an approximate current distribution determined
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from the analysis of [8] to be in the form

Jy(y) = sin kl(y – b + d)

where kl may be equal to either k. or rz/2d without significant

effect on the resulting value, for operation above the waveguide

dominant-mode cutoff frequency.

Using this distribution we obtain

()A(l- COS kl d)2 [1 -

()

Zx,

~ = r102
exp (-rlo~)] sin2 —

a

~~2 Cn + ~~1 ~~1 Bnm

(5)

where

()c“= -!-.(1
{

2
- COS kl d)2 ~+—

n r.. rn02

1 (=). [exp ( – rno~) – 1] sin2

and

(~+~ [exp (- rnmw) - 1]
“ rnm rnmz ) P(=)]

“[[
2

k14 COS ~ (b -. d) – COS (l?m + kid) 1
1[k12-Fw “

For the touching strip, substitution of a constant current in

(4) yields

() ()~ [1 – exp (–rlo~)] sin2 ~

L = ’10
a

(6)

$, D.

where

(Dn=~w+ ~ [exp (- mow)
rno2 . - ‘])si’’’(=l”

The accuracy of the expression for L in (5) and (6), which are

derived using the approximate forms for current distribution,

must now be assessed through experimental measurements.

IV. EXPERIMENTAL VERIFICATION

The axial obstacles shown in Fig. 2(a) and (b) may be re-

presented by a T-equivalent network, as shown in Fig. 2(c);

because of the longitudinal symmetry of the structure, the series

arms of this circuit are equal and the calculation is simplified.

When the waveguide is terminated in a match, the normalized

input admittance may be represented by yin, as shown in Fig.

2(c). Theoretical values of Y,. may be found from R, using the

expression for L, and the susceptive component ~in compared

with experimental measurements.

~= l-R _2+(H+A)L
m (7)

l+ R-- 2+(H– A)L”

(a) (b)

c’

(c)

T’ Iyin

Fig. 2. The axial-strip circuit with a matched termina~imt. (a) A non-
touching strip. (b) A touching strip. (c) Two-port equwalent circmt.
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Fig. 3. Input susceptance of a thin axial strip terminated in a match as a
function of frequency. (a) For a touching strip, the solid line shows
theoretical results for a centered strip having an axial width w = 0.125 in.
(b) For a nontouching strip, the solid line shows theoretical results for
w = 0.133 in, ” d = 0.290 in, xi = 0.495 in; the broken hrrc shows
theoretical results for w = 0.067 in, d = 0.362 in, Xl = 0.450 in.

Experimental measurements were carried out to determine the

input admittance with a matshed termination, Fig,, 3 shQws a

comparison between measured and theoretically determined

values of Bin for both touching and nontouching strips. The

agreement is good and indicates the accuracy of the theory;

similar agreement was obtained for a wide variety of strip dimen-

sions. In Fig. 3(b), for the nontouching strip, the degree of agree-
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Fig. 4. Equivalent circuits for a thin axial strip. (a) For a touching strip.
(b) For a nontouching strip.

ment is not quite as close as for the touching strip, due to

measurement errors in determining the depth to which the strip

had been inserted in the waveguide. It is evident that a resonant

effect occurs for nontouching strips; this is explored further in

the discussion below on equivalent-circuit element values.

V. EQUIVALENT-CIRCUIT ELEMENT VALUES

Referring to Fig, 2(c), we must determine the equivalent-circuit

values xl and ~z from the yin value found with a matched

termination at the port C – C’. Equating the input admittance

from Fig. 2(c) to ~in yields these expressions for xl and ~z

(8a)

‘z=‘“{4+(*)211’” ‘8b)
where

—
P=– ‘i”

Gin2 + ~in2

Q ~ _ ‘Bi._

Gin2 + Bin2 “

Substitution for P and Q in (8) gives four sets of values for

xl and X2. Two sets are rejected, since they g@e the conjugate
value ~in*. We then imposed the additional restriction that the

equivalent-circuit element values satisfy the Foster reactance

thedrem requirement that d~/dca > 0 for a Iossless element. This

restricted the acceptable values to one set only.

The set of values for xl and ~z is presented in the sub-

sequent graphs for strips in X-band waveguide. The equivalent

circuits for touching and nontouching strips take the form

shown in” Fig. 4, where the element values are’ functions of

geometry and frequency.

Further confirmation of the theory is shown in Fig. 5 where

experimental values of Bi. for an axial-centered strip in a short-

circuited waveguide are compared with theoretical values com-

puted using xl and X2.

Fig. 6 shows the variation in xl and ~, with width for a

centered strip. The general features of Fig. 6(a) compare favor-

ably with a similar curve computed by Konishi et al. [3] using

a Rayleigh–Ritz approach. It should be noted that as the width

increases, the assumption that the current distribution is in-

dependent of z will require closer examination, and the theoret-
ical expression modified.

For a nontouching strip, the effect of variation in depth of strip

insertion into the guide is presented in Fig. 7(a), from which

it is seen that xl is insensitive to depth, while the resonant

frequency of ~z is determined by this depth. Such curves obtain

a plot of resonant freq~ency as a function of depth, for various

strip widths, shown in Fig, 7(b); neglecting the dependence on

strip width, the resonant frequency is approximately that for

‘8 9 10 11 /12
o - ,
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13 Frequency GHZ
/. *#x/ < .-
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, /
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/
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Fig. 5. Normalized input susceptance of a thin axial touching strip in a
short-cmcuited wavegulde as a function of frequency. The strip width is
w = ().070 in and its edge is 1 = 2.298 in from the short ~ir~uit. The
solid line shows theoretical values.
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Fig. .6. Equivalent circuit elem~nt values ~1 and ~z as a fun~ion of strip
width. The solid line shows X2 and the broken line shows Xl. (a) For a
centered touching strip. (b) For “a centered nontouching strip having
d = 0.300 in.

which the depth is one-quarter the free-space wavelength. A

similar resonance is obtained with a transverse nontouching

strip, as shown in [8, fig. 4(a)].

VI. CONCLUSIONS

A variational expression has been found here, which can be

used “to determine the reflection coefficient and hence the

equivalent-circuit element values for a narrow axial strip in
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Fig. 7. The effect of insertion depth of a nontouching strip on the equiv-
alent-circuit element values. (a) For a centered strip having w = 0.15 in;
the solid line shows ~z and the broken line shows X,. (b) The resonant
frequency of l’z as a function of depth for various values of w.

rectangular waveguide. The experimental values of input sus-

ceptance agree closely with the theoretical values. The resulting

equivalent circuit has direct application in the design of micro-

wave filters and tuning elements, and in the recently proposed

planar circuits and fin-line structures.
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On the Theory of Coupling Between Finite Dielectric

Resonators

LARS PETTERSSON, STOOENTMEMBER, IEEE

Abstract—The coupling coefficients between open dielectric resonators
in three useful dielectric-filter configurations, calculated from an electric
rather than from a magnetic excitation of the fields, are given. The
limitations of the latter method are pointed ont and experimental results

are given which snpports the first method and shows that the differences
cannot always be neglected.

INTRODUCTION

Mutually coupled dielectric resonators in a waveguide under

cutoff form a useful class of microwave bandpass filters [1], [2].

Since an exact field analysis of such a filter is a formidable prob-

lem, various approximate methods have been used. In order to

calculate the resonance frequencies and internal fields of the

resonators, one usually uses the so-called magnetic-wall model

[3]. To calculate the coupling between two resonators or between

a resonator and the waveguide fields various magnetic-dipole

approximations have been used [1], [2], [4], [5]. In this short

paper we will treat these coupling problems by calculating the

excited waveguide fields directly from the polarization current

density. This is also shown to be theoretically more correct than

the magnetic-dipole methods. When we make the actual cal-

culations we use the magnetic-wall model to obtain the polar-

ization currents. We then get formulas which are almost as easy

to use as the ones previously used. These formulas indicate that

the commonly used magnetic-dipole approximations can give

substantial errors in coupling strength. Experimental results

obtained with two Ti02-resonators, &, = 90, also support this

method compared to the magnetic-dipole methods.

THE EXCITATION AMPLITUDE

Suppose that we in some way have found the fields inside the

resonator and want to find the related waveguide fields for

z > xt/2, in Fig. 1. To do this we will use the polarization cur-

rent 7P as current density ~ in the waveguide or, if e,z # 1, the

excess polarization current density j~ eo(e,l – erz)~. In the

following we will, however, assume that &,z = 1.

We expand the waveguide fields in orthogonal modes as

17* = ~ Cn*(.?n t ~zn)e~jp”z = ~ C~*17.* (1)
n n

IT* = ~ Cn*(t fin + Fzzn)eT~fl”z = ~ Cn’k17n* (2)
n n

and get [6]

J
c“+=–+’ 7P - ~.- dV

nv

where

Pn=2

J

gnxjin.fds. (4)
waveguide
cross
section

So far we have not introduced any approximations. In the

magnetic-wall model we may obtain expressions for the fields

inside the resonator [3]. In this model the surfaces y’ = f B/2

and z’ = t A/2 in Fig. 1 are perfect magnetic conductors. It is
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