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Iv. SUMMAkY

. The capacitance of a rectangular metal line over a conducting
ground plane, for W/h 2 1, s

C = 2¢/n In 2R,/R,
InR, = —1 — aW/2h — [(p + 1)/p¥/?] tanh~1 p=1/2
~ In [(p — 1)/4p]
Ry=n+ [(p + D/2p'?]InA

n = p2@ZW2h + [(p + D2p"*][1 + In 4/(p — D]
— 2tanh~1 p~1/2}
A = larger value, # or p

p=2B>—1++V2B> = 1) - 1

B=1+ th 24
The accuracy of (24) is about 1 percent when Wih 2z 1.
The capacitance of a rectangular metal line with two con-

ducting. ground planes, for W/h = 0.5, d/h = 0.5, is

Cle = 2/n In Ry/R,
InR, = —nW/2h — 2 tanh~1 N + 9 + )
+ 2ytanh~ p~Y2 & Indp/(p — 1)
In Ry = y={xW/2h + 2a tanh=* V(I + /p + )
+ yIn(p — 1)/4 — 2 tanh~! p~1/2}
a=(+d+ t)h
y = dlh
p = q*

g=13[® -9 -1+ V@ -y = 1) - 42 25

The errors are less than 1 percent. Both formulas are motre
accurate for a wider and/or a thicker metal line. Once the capac-
itance is found, the characteristic impedance of the composite
transmission line is easily obtained. Aside from a constant, the
characteristic impedance is the inverse of the capacitance.
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Equivalent Circuit of a Narrow Axial Strip in Waveguide

KAI CHANG, STUDENT MEMBER, IEEE, AND
PETER J. KHAN, MEMBER, IEEE

Abstract—A theoretical determination is made of the two-port equiv-
alent circuit of a narrow strip located axially in a rectangular waveguide
such that it extends partially or completely across the waveguide narrow
dimension. The analysis is based upon derivation of a variational expres-
sion for a field quantity from which can be determined the reflection co-
efficient and the equivalent-circuit parameters. Experimental input
susceptance values agree closely with the theory. The analysis shows
that the T-equivalent network of a nontouching strip has a series-resonant
shunt circuit. This element has application in filter and impedance-
transforming networks, in planar circuits, and in fin-line structures.

I. INTRODUCTION

This short paper presents a theoretical determination, with
experimental verification, of the equivalent circuit of a narrow
infinitesimally thin perfectly conducting strip which is partially
or completely inserted in a rectangular waveguide in such a
manner that the strip surface is parallel to the narrow waveguide
wall.

Konishi et al. [1]-[3] have developed a method for the
design of planar circuits, by which the circuit elements are
located on a metal sheet which is inserted axially into a wave-
guide; its advantages include low cost and ease of mass produc-
tion. Meijer [4]-[7] has advocated fin line, in which metal fins
printed on a dielectric substrate bridge the broad walls of a
rectangular waveguide, as a propagating structure for millimeter-
wave integrated circuits. The geometry considered in this short
paper belongs to the general form defined by those papers..
Although the analysis presented here is restricted to narrow
strips, it is applicable to the design of bandpass filters, diode
mounts, and tuning elements of the form described by Konishi
et al. [2], [3]. '

The narrow axial nontouching thin strip has not previously
been subjected to theoretical analysis. Konishi er al. [2], [3]
used a Rayleigh-Ritz variational technique to obtain an equiv-
alent circuit for a uniform strip which extends across the entire
waveguide height. Their method requires knowledge of the modes
in the two sections of the waveguide bifurcated by the strip; thus
it is not readily applicable to the nontouching strip.

The approach used here is based upon the variational method
used previously by the present authors for the analysis of a thin
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Fig. 1. The narrow axial strip in rectangular waveguide.

transverse nontouchlng strip in guide [8]. However, further
development is necessary to apply that theory to the axial strip
because of the greater difficulty in obtaining a varidtional form,
and also because the axial strip must be represented by a two-
port network.

I REFLECTION-COEFFICIENT DERIVATION

The structure being analyzed here is shown in Fig. 1 for the
case where the strip does not extend across the entire waveguide
height; the special case of a touching strip is readily treated by
this analysis, putting d = b. The strip is assumed to be perfectly
conducting (as is the waveguide) and to be infinitesimally thin.
The strip width w is assumed to be small compared to .the
dommant-mode waveguide wavelength so that the current does
not vary appreciably with z in the range 0 < z < w; this restric-
tion may be removed through a generalization of the analytical
approach presented here.

Consider a dominant-mode incident electric field, we assume
that the scattered field lies only in the $ direction, and the Green’s,
function G(r | ) takes the same form as in [8] with the exception
that exp (—Iylz)) is replaced by exp (—palz — z°]).

The total field at any point r vanishes on the surface §

sin ( p ) exp (=Tyo2) ~ lelof [Gy(rlr ) -

J(y',2") dy' dz = 0 on S (1)

For a narrow strip, J,()’,z") will hot vary appreciably1 with z*
in the range 0 < z’ < w, the reflection coefficient R for the

L =

2 V2 (®1\ 1 = _
(1‘102) 51'11 ( a) [1 - exp(
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Equation (1) can be manipulated into the form

sin (""‘) {—— [1 - exp (- F10W)]} f" T3 dy
rlO b—d -

= Tk G2 (R (2w 2
abrlo a rlo rloz

b b . ) .
: f _ f LGV dy dy
b—4d Jb—-d

[exp (=T1om) — 1]}

. 2w 2 .
csin? (TPA1) |2¥ exp (— ) — 1],
(a 22+ 25 fexp (=) = 1]

f f J(y)J(y)COS(mny)
b—d Jb—-d b

-cos( )dy’dy

through multiplication by J,(y) and integration with respect to
y and z over the strip surface at x = x,. Note that this equation
applies to points located on the strip, i.e., for 0 < z < w,

The left-hand side of this equation may be rewritten, using
(2), as

3

b o
(4 + HR) sin (’%‘1) f T(y) dy
b—-d
where

A

1
— [1 — exp (=T'1ow)]
Ty
2
2w + — [exp (=T ow) — 1]
o Tso
) 1 - Xp (-rlOW)

Using this form, together with (2) at the z = 0 plane where both
equations hold, we can form an expression L = ~2R/(4 + HR)
given by

b b
T'iom)] f f TN dy' dy
b-d Jb—d.

n=2 m=0 m=1;

kqo?
atn=1 3] nm

b b
. f (NI cos (2] cos may' ay dy.
b-d Jo—-a ‘ : b b

dominant modé at z = 0 may be found as

R = (ZSoro ) [ 1 _ T
(abrm) sin ( a " Tyo fexp (~Tso) 1

b
: f 5,0 dy'.
b—4a -

In [8] the R expression could be directly substituted in the E,
expression; a more involved derivation is hnecessary here.

()

1 Our analy51s initially used: J(y',z") = J(¥") exp (—T'y42) rather than
J(y',2") = J(¥"). However, for strip ‘widths of interest, the susceptance
values obtamed were almost exactly equal to those obtained for the simpler
current form. We have consequently preferred this form, due to the relative
simplicity of the resulting algebra.

(i $ z)(z“"""("°2‘m725‘2) (2

——— [exp (=) — 1]} sin? (%)

Doum | a

C)

Using a mecthod similar to Lewin [9], this éxpression for L is
readily shown to be stationary for small variations in J,(y) about
its correct value. The definition of L compares with the suscep-
tance form —2R/(1 + R) found to be stationary for the trans-
verse strip [8]. The additional complexity here arises from the
two-port nature of the axial strip impedance.

Using an approximate form for J,(y), we can now determine
L and hence R = — AL/(HL + 2).

III. REFLECTION-COEFFICIENT EVALUATION

For the nontouching strip, the L expression in (4) can be
evaluated using an approximate current distribution determined
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from the analysis of [8] to be in the form
J(y) =sinky(y — b + d)

where k&, may be equal to either kq or n/2d without significant
effect on the resulting value, for operation above the wavegmde
dominant-mode cutoff frequency.

Using this distribution we obtain

( 2 )(1 — c0s k;d)*[l — exp (=T ;ow)] sin? (nxl)
L = 02 a

ﬁMs

1

‘ ’ ©)
where
1 2w 2
C,=(—} A ~ cos k1d)* | == +
(rno) ¢ 1D {rno T’
- [exp (= Tpow) — 1]} sin? (ﬂ)
: a
and
2 [kt - (78
B ° b
"o kozrnm
. {2w + 2 [exp (—pw) — 1]} [sin2 <—Mx1)]
an nm2 a

2
k4 [cos % (b — d) — cos (mr + kld)]

k 2 _~ m2n2 2
K1 B2
For the touching strip, substitution of a constant current in
(4) yields

(FZ 2) [l — exp (=Tyow)] sin? (n_xl)
L=210 — ‘ (6
) D,
nzz
where
D, = 2 w + 1 [exp (—=Tow) — 1]} sin? (2221
" T’ Tho " a ]’

The accuracy of the expression for L in (5) and (6), which are
derived using the approximate forms for current distribution,
must now be assessed through experimental measurements.

IV. EXPERIMENTAL VERIFICATION

The axial obstacles shown in Fig. 2(a) and (b) may be re-
presented by a T-equivalent network, as shown in Fig. 2(¢c);
because of the longitudinal symmetry of the structure, the series
arms of this circuit are equal and the calculation is simplified.
When the waveguide is terminated in a match, the normalized
input admittance may be represented by ¥, as shown in Fig.
2(c). Theoretical values of Y., may be found from R, using the
expression for L, and the susceptive component B, compared
with experimental measurements.

_2+ H+ AL
2+(H A)L

- _1—-R
in 1+R

)
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2. The axial-strip circuit with a matched termination. (a) A non-
touchmg strip. (b) A touching strip. (¢) Two-port equivalent circuit.
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Fig. 3. Input susceptance of a thin axial strip terminated in a match as a’
function of frequency. (a) For a touching strip, the solid line shows
theoretical results for a centered strip having an axial width w = 0.125 in.
(b) For a nontouching strip, the solid line shows theoretical results for
w= 0.133 in, d'= 0. in, x; = 0.495 in; the broken line shows
theoretical results for w = 0.067 in, d = 0. 362 i in, x; = 0.450 in.

Experimental measurements were carried out to determine the
input admittance with a matched termination. Fig, 3 shows a
comparison between measured and theoretically determined
values of B;, for both touching and nontouching strips. The
agreement is good and indicates the accuracy of the theory;
similar agreement was obtained for a wide variety of strip dimen-
sions. In Fig. 3(b), for the nontouching strip, the degree of agree-
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Fig. 4. Equivalent circuits for a thin axial strip. (a) For a touching strip.
(b) For a nontouching strip.

ment is not quite as close as for the touching strip, due to
measurement errors in determining the depth to which the strip
bad been inserted in the waveguide. It is evident that a resonant
effect occurs for nontouching strips; this is explored further in
the discussion below on equivalent-circuit element values.

V. EQUIVALENT-CIRCUIT ELEMENT VALUES

Referring to Fig. 2(c), we must determine the equivalent-circuit
values X; and X, from the ¥;, value found with a matched
termination at the port C — C’. Equating the input admittance
from Fig. 2(c) to Y,, vields these expressions for X; and X,

- - Q
Xi=-X, & 8
1 Z_P—l (8a)
- (0] 27y1/2 g
X, = & —_—
s GH)T W
where
G
P='__—m:‘—
Gin2+Bin2'
_Em
e= 2+ Bi?

Substitution for P and Q in (8) gives four sets of values for
X, and X,. Two sets are rejected, since they give the conjugate
value ¥;,*.-We then imposed the additional restriction that the
equivalent-circuit element values satisfy the Foster reactance
theorem requirement that dX/dew > 0 for a lossless element. This
restricted the acceptable values to one set only.

The set of values for X; and X, is presented in the sub-
sequent graphs for strips in X-band waveguide. The equivalent
circuits for touching and nontouching strips take the form
shown in Fig. 4, where the element values are functions of
geometry and frequency.

Further confirmation of the theory is shown in Fig. 5 where
experimental values of B;, for an axial-centered strip in a short-
circuited waveguide are compared with theoretical values com-
puted using X; and X,.

Fig. 6 shows the variation in X, and Y, with width for a
centered strip. The general features of Fig. 6(a) compare favor-
ably with a similar curve computed by Konishi et al. [3] using
a Rayleigh-Ritz approach. It should be noted that as the width
increases, the assumption that the current distribution is in-
dependent of z will require closer examination, and the theoret-
ical expression modified.

For a nontouching strip, the effect of variation in depth of strip
insertion into the guide is presented in Fig. 7(a), from which
it is seen that X, is insensitive to depth, while the resonant
frequency of X, is determined by this dépth. Such curves obtain
a plot of resonant frequency as a function of depth, for various
strip widths, shown in Fig. 7(b); neglecting the dependence on
strip width, the resonant frequency is approximately that for
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Fig. 5. Normalized input susceptance of a thin axial touching strip in a

short-circuited waveguide as a function of frequency. The strip width is
w = 0.070 in and its edge is / = 2.298 in from the short circuit. The
SOlld line shows theoretical values.
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Fig. 6. Equivalent circuit element values X; and X, as a function of strip
width. The solid line shows X, and the broken line shows X;. (a) Fora
ccntere;lotouchmg strip. (b) For a centered nontouching strip having
d = 0.300 in

which the depth is one-quarter the free-space wavelength. A
similar resonance is obtained with a transverse nontouching
strip, as shown in [8, fig. 4(a)].

VI CONCLUSIONS

A varlatlonal expression has been found here, Wthh can be
used to determine the reflection coefficient and hence the
equivalent-circuit element values for a narrow axial strip in
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Fig. 7. The effect of insertion depth of a nontouching strip on the equiv-
alent-circuit element values. (a) For a centered strip having w = 0.15 in;
the solid line shows X, and the broken line shows X;. (b) The resonant
frequency of X, as a function of depth for various values of w.

rectangular waveguide. The experimental values of input sus-
ceptance agree closely with the theoretical values. The resulting
equivalent circuit has direct application in the design of micro-
wave filters and tuning elements, and in the recently proposed
planar circuits and fin-line structures.

REFERENCES

[1] Y. Konishi, K. Uenakada, N. Yazawa, N. Hoshino, and T. Takahashi,
“Simplified 12-GHz low-noise converter with mounted planar circuit in
waveguide,” IEEE Trans. Microwave Theory Tech., vol. MTT-22,
pp. 451454, April 1974.

[2] Y. Konishi, K. Uenakada, and N. Hoshino, “The design of planar
circuit mounted in waveguide and the application to low noise 12-GHz
converter,” 1974 IEEE S-MTT International Microwave Symposium
Digest, pp. 168-170.

[3] Y. Konishi and K. Uenakada, “The design of a bandpass filter with
inductive strip—planar circuit mounted in waveguide,” IEEE Trans.
Microwave Theory Tech., vol. MTT-22, pp. 869-873, October 1974,

[4] P. J. Meier, “Two new integrated-circuit media with special advantages
at millimeter wavelengths,” 1972 IEEE-GMTT International Microwave
Symposium Digest, pp. 221-223.

[5] , “Equivalent relative permittivity and unloaded Q factor of
integrated finline,” Electronics Letters, vol, 9, pp. 162—-163, April 5, 1973.

6] , “Integrated fin-line millimeter components,” 1974 IEEE S-MTT

International Microwave Symposium Digest, pp. 195-197.

, “Integrated fin-line millimeter components,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-22, pp. 1209-1216, December 1974.

[8] K. Chang and P. J. Khan, “Analysis of a narrow capacitive strip in
waveguide,” IEEE Trans. Microwave Theory Tech., vol. MTT-22,
pp. 536-541, May 1974.

{91 L. Lewin, Advanced Theory of Waveguides.
1liffe, 1951.

London, England:

615

On the Theory of Coupling Between Finite Dielectric
Resonators

LARS PETTERSSON, STUDENT MEMBER, IEEE

Abstract—The coupling coefficients between open dielectric resonators
in three useful dielectric-filter configurations, calculated from an electric
rather than from a magnetic excitation of the fields, are given. The
limitations of the latter method are pointed out and experimental results
are given which supports the first method and shows that the differences
cannot always be neglected.

INTRODUCTION

Mutually coupled dielectric resonators in a waveguide under
cutoff form a useful class of microwave bandpass filters [1], [2]. -
Since an exact field analysis of such a filter is a formidable prob-
lem, various approximate methods have been used. In order to
calculate the resonance frequencies and internal fields of the
resonators, one usually uses the so-called magnetic-wall model
[3]. To calculate the coupling between two resonators or between
a resonator and the waveguide fields various magnetic-dipole
approximations have been used [1], [2], [4], [5]. In this short
paper we will treat these coupling problems by calculating the
excited waveguide fields directly from the polarization current
density. This is also shown to be theoretically more correct than
the magnetic-dipole methods. When we make the actual cal-
culations we use the magnetic-wall model to obtain the polar-
ization currents. We then get formulas which are almost as easy
to use as the ones previously used. These formulas indicate that
the commonly used magnetic-dipole approximations can give
substantial errors in coupling strength. Experimental resuits
obtained with two TiO,-resonators, & = 90, also support this
method compared to the magnetic-dipole methods.

THE EXCITATION AMPLITUDE

Suppose that we in some way have found the fields inside the
resonator and want to find the related waveguide fields for
z > A[2, in Fig. 1. To do this we will use the polarization cur-
rent J, as current density J in the waveguide or, if ¢,, # 1, the
excess polarization current density jo &y(e; — &2)E. In the
following we will, however, assume that ¢, = 1.

We expand the waveguide fields in orthogonal modes as

E* = ¥ GG £ g)e™ P = ¥ GAE: (1)
n n
HE =Y CE(thy + hp)e™ =Y CEHE  (2)
n n
and get [6]
Gt = —%f J,- B~ dv 3)
n JvV
where .
P,,=2f &y X hy- 2ds. C))
waveguide

Cl‘OS§
section
So far we have not introduced any approximations. In the
magnetic-wall model we may obtain expressions for the fields
inside the resonator [3]. In this model the surfaces y* = +B/2
and z’ = +A/2 in Fig. 1 are perfect magnetic conductors. It is
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